
Orbital, Rotational and Climatic Interactions:

Energy Dissipation and Angular Momentum

Exchange in the Earth-Moon System

Final Report

Principal Investigator. Gary D. Egbert

09/15/97_09/14/01

College of Oceanic and Atmospheric Sciences

Ocean Administration Building 104

Oregon State University

Corvallis, ORi 97331-5503

Grant Number: NA _ 5-6156

Any opinions, findings, and conclusions or recommendations expressed in

this material are those of the author and do not necessarily reflect the

views of the National Aeronautics and Space Administration



1 Summary

A numerical ocean tide model has been developed and tested using highly accurate

TOPEX/Poseidon (T/P) tidal solutions. The hydrodynamic model is based on time

stepping a finite difference approximation to the non-linear shallow water equations. Two

novel features of our implementation are a rigorous treatment of self attraction and load-

ing (SAL), and a physically based parameterization for internal tide (IT) radiation drag.

The model was run for a range of grid resolutions, and with variations in model parame-

ters and bathymetry. For a rational treatment of SAL and IT drag, the model run at high

resolution (1/12 degree) fits the T/P solutions to within 5 cm RMS in the open ocean.

Both the rigorous SAL treatment and the IT drag parameterization are required to obtain

solutions of this quality. The sensitivity of the solution to perturbations in bathymetry

suggest that the fit to T/P is probably now limited by errors in this critical input. Since

the model is not constrained by any data, we can test the effect of dropping sea-level to

match estimated bathymetry from the last glacial maximum (LGM). Our results suggest

that the _ 100 m drop in sea-level in the LGM would have significantly increased tidal

amplitudes in the North Atlantic, and increased overall tidal dissipation by about 40%.

However, details in tidal solutions for the past 20 ka are sensitive to the assumed strati-

fication. IT drag accounts for a significant fraction of dissipation, especially in the LGM

when large areas of present day shallow sea were exposed, and this parameter is poorly
constrained at present.

2 Introduction

The evolution of the mooon's orbit around the Earth is closely linked to the history of

tidal dissipation in the ocean (e.g., Bills, and Ray, 1999). This connection, and the clear

evidence that tidal dissipation must have varied significantly over time, have spurred a

number of efforts to model the ocean tides in the recent and distant past (e.g., Thomas

and Sundermann; 1999; and references therein). It is far from clear how reliable these

modeling studies are, given that bathymetry in the past is only known approximately,

and given the challenges in numerical modeling of even the modern day tides.

With the availability of TOPEX/Poseidon (T/P) altimeter data, barotropic tidal eleva-

tions in the open ocean are now known to within roughly 1 cm (Shum et al., 2000).

However, to obtain solutions with this accuracy it has been necessary to use some sort of

data assimilation or empirical mapping approach (e.g., Egbert et al., 1994; Schrama and

Ray, 1994). The results of Le Provost et al. (1994) with the finite element hydrodynamic

model FES94 suggested that accuracies approaching the empirically constrained solutions

could be obtained with a purely hydrodynamic model, if high enough numerical resolution

were used. However, in this work modeling was accomplished separately for individual



oceanbasins,and the results werespliced together. Open boundary conditions for each
basinwereadjusted to achieveagreementwith tide gauges,sometimesevenusinga strong
constraint data assimilation approach(Lyard and Genco,1994),so thesesolutions were
not really independentof observationaldata. Subsequentimprovementsto the Grenoble
modeling codehave allowedsimultaneousmodeling of the full globe with no adjustable
open boundary conditions. The resulting global solutions fit validation tide gaugesmuch
more poorly (F. Lyard, personalcommunication), demonstrating the critical role played
by data in FES94.

There is now strong evidencethat significant energy is transfered from barotropic to
internal tides over rough topography in the deep ocean(Egbert and Ray, 2000;2001).
Sincethis "internal tide drag" appearsto account for about 1/3 of the total tidal dissi-
pation, accuratemodeling of the barotropic tide almost certainly will requireaccounting
for this conversion,either by modelingthe full three-dimensionalstratified ocean,or by
somesort of parameterization (Jayneand St. Laurent, 2001). Only the later approachis
computationally feasibleat this time.

..

In this report we describe our efforts to develop a global barotropic hydrodynamic model

which reproduces the present day tidal elevation fields using only the astronomical forcing,

with no data assimilation or boundary condition constraints. We use a straightforward

modeling approach, based on finite difference time-stepping of the non-linear barotropic

shallow water equations (SWE), with a rigorous treatment of ocean self attraction and

loading (SAL) effects, and several parameterizations of internal tide (IT) drag. Computa-

tions are done for a wide range of nearly global model grids, with resolutions ranging from
O O

1 -1/12 . We also do experiments with small perturbations to our standard bathymetry,

to test sensitivity of solutions to this critical input parameter. For all of the results re-

ported here we focus on the principal lunar constituent M2, but other constituents were

included in the modeling effort. As we shall show, including a parameterization for IT

drag significantly improves the fidelity of the solution. The best model results (5 cm

RMS misfit between deep-ocean T/P elevations and the numerical model) are obtained

with the highest resolution grid, and with rigorous treatment of ocean self-attraction and

loading. The level of accuracy achieved is in fact reasonably consistent with the effect of

likely errors in the currently best available bathymetry.

Finally, we consider the effect of dropping sea-level to that estimated for the last glacial

maximum (LGM). The IT drag parameterization we use depends on ocean stratification,

and it is not clear how this effect should be modeled for the LGM. We test several

scenarios, including stratification similar to the modern ocean, and significant reductions

and increases in stratification. As we shall show, the effects of LGM sea-level changes

are much larger than errors in the modern solutions. In particular, tidal dissipation

increases by up to 50% in the LGM. However, the sensitivity of the model results to both

bathymetry and stratification suggests that efforts to accurately model tidal dissipation

in even the recent past remain very challenging.



3 Hydrodynamic Modeling

Finite-difference SWE

We assume shallow water dynamics of the form

0U

0---t- + f × U + U. VU + aHV2U + gHV(( - (SAL) + 9c -- f0 (1)

0(
0-7= -v. u. (2)

Here ( is the tidal elevation; U is the volume transport vector, equal to velocity times

water depth H; f is the Coriolis parameter (oriented to the local vertical), 5 is the fric-

tional or dissipative stress, and the term aHV2U is a crude parameterization of horizontal

turbulent eddy viscosity, included primarily to improve numerical stability. For most of

the results discussed here we have taken aH -- 103m2s-X. Elevations in the open ocean

were found to be insensitive to the exact value of this parameter unless it was signifi-

cantly increased (e.g., to 105m2s-1). The global solution is also only weakly dependent

on inclusion of the non-linear terms in (1). The astronomical tide generating force, which

includes the Earth's body tide (Hendershott, 1972) is denoted by f0. We included up

to 8 constituents (M2, $2, N2, K2, K1, O1, P1 Q1) in f0. However, very similar results

were obtained (for M2) when the forcing was restricted to the dominant semi-diurnal and

diurnal constituents M2 and K_, so only these two constituents were used for most of the

extensive modeling experiments described here.

Tidal loading and self-attraction (Hendershott, 1972; Ray, 1998) are accounted for by the

term _SAL, which we discuss in detail below. We solve the system of equations (1) and (2)

numerically on a C-grid, following the finite difference time-stepping approach described

in Egbert et al. (1994).

All grids were nearly global, covering the area from 86°S to 82.25°N. Bathymetry was

interpolated (and smoothed where appropriate) from a combination of the 1/30 degree

database of Smith and Sandwell (1997) in deep water equatorward of 72 °, ETOPO5

(National Geophysical Data Center, 1992) in shallow areas and the Arctic, and a new

compilation of bathymetry for the Antarctic (L. Padman, personal communication). Open

boundary conditions at the top of the domain in the Arctic were specified elevations, taken

from the global FES94 solution (Le Provost et al., 1994), Tests with variants (including

the Arctic assimilation solutions of Kivman (1997)) showed that elevations outside the

arctic were nearly independent of the details in these boundary conditions. Boundary

conditions at the coast were zero normal flow, and no slip.

The dissipation term .T"- _S + ,FIT included components for bottom boundary layer

drag and IT wave radiation. The first (and standard) component was parameterized in



the usual way asquadratic in velocity

- ( ollvll/H)U, (3)

where v is the total velocity vector (in particular, including all tidal constituents), and

the value of the non-dimensional parameter co is approximately 0.0025. Test with a range

of values for co showed that deep-water elevations were only weakly sensitive to the value

of this parameter. Several different parameterizations of IT wave drag were tried.

Parameterization of Internal Tide Drag

Jayne and St. Laurent (2001) describe a simple parameterization of IT drag based on

a linear analysis of energy flux into the internal wave field due originally to Bell (1975).

In this theory energy conversion from barotropic to baroclinic tides by small amplitude
sinusoidal topography of amplitude h and wavenumber _ is

Ef -- (W2 -- f2)1/2
2 P°t_h2Nu2' (4)

where N is the buoyancy frequency, p0 the mean ocean density, f the Coriolis parameter, w

the tidal frequency, and u the barotropic tidal velocity perpendicular to the topography.

Since the theory is linear, superposition may be used to estimate conversion for more

complex topographic variations. To apply (4) Jayne and St. Laurent (2001) estimated

the height of the scattering topography as the RMS of bathymetric variations not resolved

by their 1/2 ° numerical grid, and, ignoring the dependence on tidal frequency co, obtained

a spatially varying linear drag coefficient

1

CIT - -_-_t_h2N. (5)

The buoyancy frequency N (for the ocean bottom) was obtained from Levitus (1999), the

wavenumber _ was left as a tunable parameter, and the linear dissipation term .T'IT -- ClTU

was then added to the quadratic bottom drag (3). Note that CIT is just the linear drag

coefficient required to match the energy loss to the barotropic tide predicted by the simple

theory of Bell (1975). Jayne and St. Laurent (2001) found that including this extra term

in their implementation of the linear SWE (with _ _ 2_-/10km) significantly improved fit

of modeled tidal elevations to those estimated from T/P.

We implemented and tested the scheme of Jayne and St. Laurent (2001), along with two

variants. The first of these is based on the work of Sjoberg and Stigebrandt [1992], who

give an alternative (but dimensionally similar) expression for barotropic energy conver-

sion. In this approach the conversion (comparable to Ef of (4)) is calculated by treating

the bottom topography as a series of discrete steps, and applying theories developed

for generation of internal waves by flow over sills. Note that in this approach energy



conversionis calculated for eachstep independently,and that this can only be formally
justified if the stepsare far enoughapart. Expressionsfor energy flux away from each
topographic step are given in Sjoberg and Stigebrandt (1992) and are summarized in
Gustafson (2001). The resulting expressionsfor Ef again depend quadratically on the

cross-step tidal velocity, so a linear drag coefficient CIT is readily derived as for the Bell

formula (4). This second approach has no obvious unknown or tunable parameters, but

in fact the expression for Ef can be shown to depend strongly on the grid resolution used

to define the steps (Garrett et al., 2002). For our calculations we used a 1/12 ° grid to

define the topographic steps, and stratification profiles from Levitus (1999) to compute

the IT drag. In numerical experiments with this parameterization it was found necessary

to allow for an extra tunable scaling factor to obtain the best results.

The final approach we tried is based on an extension of the theory of Bell to allow for

two-dimensional topography and a finite-depth ocean (Llewellyn Smith and Young; 2001).

As with Bell (1975) the theory is linear and inviscid, and small amplitude topography

is assumed on an otherwise flat bottom. A rigid lid is assumed at the sea-surface. The

internal tide is forced by the barotropic component of vertical velocity (e.g., Baines, 1982)

WBT(Z) -- U. VHz/H where -H _< z _< 0, and u is the depth independent barotropic

horizontal velocity. As shown in Llewellyn Smith and Young (2001) the baroclinic bottom

pressure PBc(--H) can be given as the convolution of a radially symmetric Green's func-

tion G_(s) and the barotropic vertical velocity at the bottom PBc(--H) -- G_ * WBT(--H).

Note that in our notation the Green's function gives the internal wave bottom pressure

as a function of distance from a "unit magnitude" point source forcing velocity profile (at
frequency w) of the form WBT(Z) -- -z/H. The Green's function can be written down

analytically in terms of the flat bottom vertical mode eigenvalues and eigenvectors. A

slightly simplified version, based on a WKB approximation to the vertical modes can be

given explicitly as

_ f )N. HO
g '

n

where H ° is the zero order Hankel function of the second kind, and s denotes radial

distance (Llewellyn Smith and Young, 2001). The barotropic/baroclinic energy at a fixed

location is then readily calculated as

Ef - (PBc(--H)WBT(--H)}, (7)

where the brackets denote tidal cycle averages. Further details, and exact expressions

(without the WKB approximation) are given in Llewellyn Smith and Young (2001).

This theory allows an explicit formulation for the dependence of IT drag on the barotropic

velocity which is rigorously justifiable for the case of small amplitude bottom topography

(and laterally homogeneous stratification)

Ef - (u. (VH)T_(s), VHu} - (u. n_ • u}.



From (8) we seethat for a fixed frequencya_the IT drag component of the dissipative
stress._"in (1) canbe representedasS'IT - H-1T_w * U. This is linear in the transports

U - Hu, but is non-local in space. Note also that this dissipation operator is frequency

dependent, and hence also non-local in time. As it would be extremely expensive to

fully implement this in a numerical scheme for solving the time dependent SWE, we

implemented this scheme only approximately. First, as we focus primarily on the M2

tide, we take w - 1.4052 x 10-4s -1 as a constant. Second, we do the convolution in space

once, using the frequency domain barotropic tidal velocity fields u from a numerical model

to calculate Es(O , ¢) as a function of position using (7). Then, we replace convolution

with "/'_o by multiplication with the 2 x 2 spatially varying drag tensor

a(0, ¢) - Es(0,¢)lu. V/-/I (VH) VH. (9)

Note that R is singular, since conversion to baroclinic motions occurs only for motions

perpendicular to local bathymetric gradients.

The approximate linear 2 x 2 drag tensor R will result in the correct energy dissipation at

each point provided the tidal velocities in the numerical solution are exactly equal to the a

priori assumed u in (9). For our calculation we computed u by solving the SWE in a series

of small overlapping rectangular areas, each 20 ° on a side, with grid resolution of 1/30 °,

and open boundary conditions from the global inverse solution TPXO.5 (Egbert and

Erofeeva, 2002). These local solutions are in fact quite similar to TPXO.5. The resulting

approximate drag tensors R are thus most appropriate for open ocean tidal velocities of

the modern ocean. Some thoughts on possible refinements of this procedure will be given

below. The amplitude of the drag tensor (i.e, the sum of the diagonal elements of H-1R)

is plotted on a logarithmic scale in Figure 1. The computed IT drag is largest in the open

ocean over rough topography, in most of the same areas where Egbert and Ray (2000,

2001) found significant dissipation in the barotropic tide. The IT drag coefficient is also

often large along the continental shelf break, but note that in these areas tidal volume

transports, and hence E$, are typically not so large.

Note that the spatial pattern of IT drag coefficients are very similar for all three ap-

proaches tried. This is not surprising since in all cases the estimated energy fluxes scale

quadratically with topographic slope and tidal velocity, and linearly with bottom strati-

fication, as in (4).

Implementation of the SAL Correction

In (1) the effects of ocean self-attraction and loading (SAL) are included as an extra

equilibrium-like tide (SAL. This can be related to the tidal elevation ( through convolution

(on the sphere) with the SAL Green's function (e.g., Hendershott, 1972; Ray, 1998)

(sA,, - GSAL * (. (10)
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Figure 1" Amplitude of the internal tide drag tensor H-1R for M2.
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Substituting (10) into (1) results in an integro-differential equation. A naive solution

approach, applying the full convolution operator of (10) at each time step, would obviously

not be computationally practical. For the modern day ocean C is well known (at least

in the open ocean) so _SA,_ can be computed once and added to (1) as an extra forcing

term This approach, with elevations from Schwiderski (1978), was used by Le Provost

et al. (1994). However, solutions computed in this way are not really independent of all

data, and the computed elevation fields will not in general be consistent with the assumed

CSA_. This inconsistency can lead to significant imbalances in the energy equation (e.g.,

Le Provost and Lyard, 1997). This simple approach is of course even harder to justify for

calculations with different ocean geometries, where tidal elevations may be expected to

deviate from the modern estimates of _ used to compute _SA_-

Another simple approach that has frequently been used is to approximate convolution

with _SAL with multiplication by a scalar factor /_. In this case _- _SA_ is replaced

by (1 - _)_ and (1) is reduced to a partial differential equation. Analysis by Accad and

Pekeris (1978) suggested _ _ 0.085; Schwiderski (1978) used _ - 0.1. However, as pointed

out by Ray (1998) no fixed scalar/_ is appropriate for all locations in the ocean. Our

own experiments suggested that this scalar approach could result in significant errors in

global tidal solutions. To allow rigorous treatment of SAL in global modeling Hendershott

(1972) suggested an iterative approach, with elevations _n from iteration n being used

in (10) to compute _AL, and then the result used in (1) to compute a new solution

_+1. However, numerical experiments with this approach suggested that convergence of

this iterative scheme could not be guaranteed (Hendershott, 1972; 1977). We tried this

iterative scheme for modern ocean basins, starting from an initial guess at _AL estimated



from an accurateT/P basedmodel (TPXO.5). In Figure 2a we plot (dashedline) the
RMS changein elevations I__- _-11 betweensuccessiveiterates. Differencesincrease
with subsequentiterations. Clearly the schemedoesnot convergein this case.

A slightly modified iterative approach (which was in fact first suggestedby Accad and
Pekeris(1978)) convergesrapidly. The idea is to write

(11)

where _ is chosento be a reasonablescalarSAL approximation (we used/_ - 0.1). At
iteration n + 1 we then replace _- _sAL in (1) with (1-/_)_+1- _ISA L , _n. It is readily

verified that if this converges as n _ oo, _ converges to the solution of the full integro-

differential equation. The change between successive iterates for this modified scheme,

which converges in 4-5 iterations, are plotted as the solid line in Figure 2a. Note that

the first iterate for this modified scheme (_1) was forced with the full _SAL computed from

TPXO.5, and ¢_ - 0, so the first iteration is the same as for the simpler scheme.

In Figure 2b we plot the global integral of work done by the SAL term in the tidal

equations

WsAL -- IPg f / _sALi)_/i)t)dS I • (12)

Since we assume an elastic Earth (with Love numbers strictly real) _SAL is also real and

the cycle average of the global integral must be zero (e.g., Egbert and Ray, 2001). WSA L

(computed with _ obtained from iteration n and _sA,. from the previous) is plotted as

a function of iteration number in Figure 2b. Note that for the initial iteration WSAL

is nearly 0.5 TW, a significant fraction of the 2.5 TW of M2 tidal dissipation. For the

modified (but not the simple) iterative scheme the WSAL converges rapidly to zero, further

demonstrating the consistency of _SAL and _ obtained in this way.

The iterative scheme for the SAL convolution suggests a possible refinement of our internal

tide parameterization. Given a solution at iteration n, the currents u _ could be convolved

with the Green's functions G_ to compute IT stress for each modeled tidal constituent.

These in turn could be added as extra forcing terms for iteration n + 1. A modification,

comparable to that used for the SAL convolution, would be include the local linear drag

tensor R in the model equations, and only add the deviation from this as a forcing.

This proposed scheme would (if it converges!) allow for a frequency dependent, spatially

non-local parameterization for IT drag. Since iteration for the SAL correction is already

required, this may well require no additional runs of the SWE solver. However, we have
not tested this scheme.
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Figure 2: Convergence of iterative schemes for ocean self-attraction and tidal loading. (a)

RMS difference in elevation between successive iterates, averaged over the globe. Dashed

line" iterative scheme proposed by Hendershott (1972). Solid line: modified scheme of

Accad and Pekeris (1978) described in text. (b) Convergence of global integral of SAL

work term (12) for the simple (dashed lines) and modified (solid lines) iterative schemes.

For all runs the IT drag parameterization based on (9) was used.

4 Results

Effect of Resolution

To assess how well the hydrodynamic solutions reproduce modern tidal elevations we

compare model outputs with the global inverse solution TPXO.5. This reference model is

most accurate in the open ocean, and equatorward of 66 ° where T/P data is available. The

RMS difference between M2 elevations computed using a wide range of grid resolutions

and the TIP reference solution are plotted in Figure 3. Increasing resolution of the finite

difference grid significantly improves agreement between model outputs and elevations

inferred from T/P. This it true for model runs with and without an internal tide drag

parameterization, and in deep and shallow water (Figure 3a). Including internal tide

drag significantly reduces misfits for all resolutions. The best results, with misfits in deep

water (H > 1000m) slightly below 5 cm RMS, are obtained with internal tide drag run

at 1/12 ° resolution. Only slightly worse results are obtained with a grid resolution of

1/8 ° . Including shallow seas in the comparison increases misfits somewhat (thiner lines

in Figure 3a). The work done by the tidal potential, which must equal the global tidal

energy dissipation, also converges to approximately the proper value (of approximately 2.5

TW) as resolution is increased. The agreement is better (especially at lower resolution)
when the IT drag parameterization is used.

For the results presented in Figure 3 internal tide drag was parameterized in terms of

10
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Figure 3: (a) RMS difference between M2 elevations from the T/P global inverse solutions

TPXO.5, and hydrodynamic solutions computed at a range of grid resolutions. Solid and

dashed lines are for computations with and without internal tide drag respectively. Heavy

lines marked with circles and pluses give misfits for deep (H > 1000m) water; the light

lines give misfits for the full globe (equatorward of 66°). (b) Global integral of work

done by the M2 tidal potential, for solutions with (solid lines) and without (dashed lines)
internal tide drag, for solutions at a range of resolutions.

the linear drag tensor R defined in (9), without adjusting any parameters. Very similar

results were obtained with the other two IT drag parameterizations discussed above, but

in these cases some tuning of the overall scale of the IT drag was required. For the scheme

based on Bell's (1972) formula (4) we found results were best for a value of _ _ 10-3m -_,

slightly larger than the optimal value _ _ 2_ × 10-4m -_ found by Jayne and St. Laurent

(2001). For the third scheme IT drag coefficients derived from Sjoberg and Stigebrandt

(1992) (computed using bathymetry on a 1//12 ° grid), worked best when multiplied by a
factor of 0.?5.

Sensitivity to Errors in Bathymetry

Figure 3 suggests that further increases in grid resolution will lead to little improvement

in fit to the observed modern tidal elevations. A number of factors probably limit the

accuracy that can be expected from numerical solution of the SWE at any resolution.

For example, the IT drag parameterizations we have tested are all based on a linear

treatment of small amplitude topography. Even for this simplified linear case a proper

treatment of IT drag would involve convolution with a non-local operator, so we have

only incorporated IT drag approximately. The parameterization of bottom drag in terms

of (3) with a constant co, or of subgrid scale motions in terms of an eddy diffusivity, must

also be only approximately correct. And of course, even for the modern ocean, there are

potentially significant errors in the available bathymetric databases.

11



Case Global RMS (cm) DeepOceanRMS (cm)
5_ errors 3.23 2.69
10%errors 8.17 6.65
Variable errors 8.23 6.67

Table 1" Root meansquare changesin M2 tidal elevations due to random variations of

bathymetry.

To test the sensitivity of model solutions to bathymetric errors we did a series of runs

with small random perturbations to our standard bathymetry. To save on computer time

these runs were all done on a 1/4 ° grid. Several scenarios for the bathymetry errors were

considered. In each case 10 perturbed bathymetric grids were generated, solutions were

calculated for each, and the global RMS elevation differences (relative to the standard

bathymetry solution) were computed. Results are summarized in Table 1. For the first

case theo random variations were 5% of the local depth, with a decorrelation length scale

of 2.5 . For the second case error amplitudes were increased to 10%, and for the third

variable error magnitudes were assumed, with a dependence on depth modeled on the

statistics of differences between the Gtopo30 (Smith and Sandwell, 1997) and ETOPO5

(National Geophysical Data Center, 1992) databases, which were found to be: H < 100m"

25%; 100 m< H < 200 m" 15%; 200 m< H < 1000 m: 10%; 1000 m< H < 3000 m: 6%;

H > 3000 m" 3%. For cases 2 and 3 the decorrelation length scale of the bathymetric
o

errors remained 2.5 .

As another test of sensitivity of model elevations to bathymetric inputs, we ran the model

with bathymetry derived directly from the ETOPO5 database alone. RMS differences of

M2 elevations between this solution and that from our standard bathymetry case (again

computed on a 1/4 ° grid) were 11.8 cm (all depths), and 6.9 cm (H > 1000m). This last

result is at least roughly consistent with the sensitivity inferred from our experiments with

random depth errors. It is difficult to assess the accuracy of the Gtopo30 bathymetry.

However, even if errors are only half the size of the difference between Gtopo30 and

ETOPO5 (perhaps an optimistic assessment), Table 1 suggests that open ocean errors

in modeled M2 tidal elevations of 3-4 cm RMS should be expected. Given the other

shortcomings in the numerical SWE model, the 5 cm RMS error achieved by our 1/12 °

model is probably already approaching the lower limit of M2 tidal modeling errors that

can be achieved at present. The high sensitivity of model outputs to bathymetry also

implies that it will be very difficult to model ocean tides accurately in the distant past.

M2 Tides in the Last Glacial Maximum (LGM)

With the hydrodynamic model tuned to model the present ocean tides, we consider the

•effect of dropping sea-level to that inferred for the LGM. For these experiments Bathy-

12



metric grids weremodified usingthe 1° topography and icemodel ICE-4G (Peltier, 1993;
1994). For eachtime considered(5, 10, 15, 20ka), wecomputed the differencein ocean
depth with the present day (0 ka) ICE-4G topography. The differencefields were then
interpolated onto our 1/8° nearly global grid, and addedto the presentday bathymetry.
In this mannerwemade sea-leveladjustmentsconsistentwith the resolution of ICE-4G,
but retained the higher resolution bathymetric details of the modern topography. We
did these numerical experimentsat 1/8 (instead of 1/12°) to economizeon computer
time. In Figure 4a we plot RMS differencebetweenthe present day tidal elevations(as
determined by T/P), and the elevationscomputed from a seriesof times over the past
20kyr. This figure revealsthat M2 tidal elevations in the LGM were indeed significantly
different.

In Figure 4b we plot M2 tidal dissipation (inferred from the astronomical work) in the

numerical solutions for the past 20 kyr. A significant increase in dissipation, by approxi-

mately 40% or more, accompanies the drop in sea-level which exposed many of the shallow

shelf areas where present day dissipation is greatest.

For the results of Figure 4 we have kept the IT drag tensor exactly as estimated for the

modern ocean. Since this depends strongly on stratification this extra frictional term

may not be appropriate for the LGM. (The IT drag based on (9) also depends, but much

more weakly, on the tidal currents. Note that with the other two formulations tried the

estimated coefficients depend only on the bathymetric gradient and the stratification.)

As a sensitivity test we did computations for 20 ka with IT drag coefficients reduced and

increased (uniformly across the globe) from our estimates based on the modern stratifica-

tion. The first case, which corresponds to a significant decrease in stratification, results in

further increases in tidal dissipation to over 4 TW. For the second case (with increased IT

friction) total dissipation is reduced, and elevations are somewhat more consistent with

those of the present day.

In Figure 5 we plot M2 elevation amplitude and phase for the modern day and 20 ka

1/8 ° M2 tidal solutions, computed with the standard IT drag parameterization, and the

20 ka solution computed with IT drag coefficients reduced by a factor of 4. Note that

the color scale for the amplitudes is logarithmic. Amplitudes for the 20 ka solutions

are noticeably larger throughout the ocean. Amplitude increases are especially great in
the North Atlantic, where tidal amplitudes in the 20 ka model solution exceed 3-4 m

over much of the Labrador Sea, and off the Atlantic coasts of Spain and North Africa.

Reducing the IT drag coefficient results in further increases in amplitude. For this case

more significant amplitude increases also occur in the Pacific basin, especially off the east
coast of Australia and around New Zealand.

In Figure 6 the distribution of tidal energy dissipation is plotted for the three numerical

solutions of Figure 5, and for the solution computed with present day topography but no

internal tide drag. For these calculations we followed the approach described in Egbert
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Figure 4: (a) RMS misfit to modern tidal elevations for solutions computed with

bathymetry appropriate to the past 20 kyr. (b) Work done by the tidal potential over this

time. The asterisks and open circles at 20 ka are for the cases with IT drag multiplied by
0.25 and 2, respectively.

0ka 0ka 20ka 20ka 20ka

TPXO.5 GOT99hf IT no IT IT ITx.25 ITx2

Shallow 1.625 1.717 2.104 2.644 2.443 3.088 1.877

Deep .813 .729 .576 .061 1.513 1.038 1.817

'lbtal 2.438 ' 2.446 2.680 2.705 3.956 4.126 3.694

Table 2" Dissipation (in TW) in deep and shallow seas, following the division given in

Egbert and Ray (2001). TPXO.5 and GOT99hf are constrained by T/P data, the other
4 are purely numerical solutions discussed in text.

and Ray (2001), with dissipation computed as a local balance between energy flux diver-

gence and work done by the tide generating force and SAL. A rough breakdown between

dissipation in shallow seas and the deep ocean, is given in Table 1 for these four solutions,

and for the 20 ka solution with IT drag increased by a factor of 2. For comparison, results

from two of the T/P constrained solutions from Egbert and Ray are also given here. A

more detailed breakdown for the shallow seas and deep-ocean areas discussed in Egbert

and Ray (2001) is given in Figure 7 for all 5 of the numerical solutions and TPXO.5.

Figure 7 reveals fairly good agreement between the spatial distribution of dissipation in

the 0 ka solution (with IT drag) and in the T/P constrained solution TPXO.5. The most

significant discrepancies in shallow seas are in the Arctic, along the West coast of North

America and around New Zealand. In all of these areas the numerical model dissipates

more energy than the T/P based estimates suggest. Note that areas around Indonesia

are poorly constrained by the T/P data, as discussed in Egbert and Ray (2001). In deep

water, areas in the South Pacific (Micronesia/Melanesia and Polynesia) come out high in

the numerical solution, while the Mid-Atlantic and W. Indian Ridges come out low. This

suggests that our IT parameterization overestimates drag produced over the larger scale
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topography associated with volcanic arcs and island chains, and underestimates drag over

oceanic spreading centers, which are dominated by smaller spatial scales, and are spread

over a larger area. Turning off the IT drag of course nearly eliminates dissipation in all

of the deep ocean areas. It also causes significant increases in dissipation in a number of

shallow seas, especially in area (I), which includes the Labrador sea and all points north

and west into Hudson Bay, on the Patagonian and European Shelves, and in the Bering
Sea.

As Figures 6 and 7 and Table 2 show, dramatic changes to the distribution of tidal

energy dissipation are likely to result from the drop in sea-level of the LGM. Some of

the major shallow sea sinks from the present day ocean are significantly reduced in area,

and as a result would dissipate little energy. These include the Yellow Sea, the shelf

off the northeast coast of Brazil, and the Andaman Sea. Dissipation is also significantly

reduced over the European and Patagonian shelves and in the Gulf of Maine off the east

coast of North America. Dissipation in some other areas increases dramatically in the

model solutions for 20 ka. These include the Hudson Bay/Labrador Sea area, the Arctic

(including here the Norwegian sea) and Antarctic, and the area around the Caribbean.

The dissipation in this last area is concentrated over the volcanic arc on the eastern edge

of this area, and almost all of the dissipation is in fact associated with IT drag, rather

than bottom boundary layer processes in shallow seas. This is just one of the areas around

the North Atlantic where tidal dissipation increases dramatically in the LGM. There are

also significant increases for the Mid-Atlantic Ridge (especially in the North Atlantic; see

Figure 6), and off the northwest coast of Africa.

When IT drag is also reduced by a factor of 4 for the 20 ka bathymetry, further significant

increases are observed in the Hudson Bay region, the Arctic and Antarctic, and on the

Eastern edge of the Caribbean. Each of these areas now accounts for a rather astounding

(by the standards of the present day ocean) 400-600 GW. Dissipation is reduced in some,

but not all, deep ocean areas. Thus significant reductions in the drag coefficients are

counterbalanced to some extent by increases in tidal current velocities. Thus while the

IT drag coefficient is reduced by a factor of 4, dissipation in the deep ocean areas (where

IT drag is by far dominant) is only reduced by a factor of 1.5 overall (Table 2). Figure 6d

provides a striking image of the redistribution in tidal dissipation that would result from

this (rather hypothetical) change in IT drag coupled with the drop in sea-level. In this

case there are three centers of tidal dissipation, in the North Atlantic, in the seas around
New Zealand, and around Antarctica.

Increasing IT drag by a factor of 2 for the 20 ka bathymetry results in less obvious changes

in the distribution of dissipation. However dissipation in the deep water is increased

somewhat (Table 2), especially along the Mid-Atlantic and West Indian Ridges.
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5 Conclusions

Efforts to develop a purely hydrodynamic model of the present day tides have been rea-

sonably successful. A convergent iterative scheme for rigorous treatment of SAL has been

developed, and three different approaches to parameterization of IT drag have been tried.

Both the rigorous treatment of SAL and IT drag parameterizations are required to ob-

tain agreement with the highly accurate T/P constrained tidal solutions for the present

day ocean. Success with the numerical modeling also required high resolution numerical

grids and accurate bathymetry. Limitations in our ability to reproduce the present day

tides are probably due to errors in bathymetry, and probably also our approximate linear

theory for computing IT drag.

After achieving reasonable accuracy for the present day tides, the hydrodynamic model

was run with bathymetry estimated for a series of times over the past 20 ka, extending into

the LGM. The drop in sea-level associated with the LGM is found to result in significant

changes in tidal fields, and increases of 40-50% in total dissipation. However, details are

sensitive to stratification, and this is much more poorly known than bathymetry in the

recent past. The full implications of the predicted changes in LGM tides remain to be

explored.
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